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Figure 1. We observe that the visual representations within the video diffusion model explicitly capture both current and predicted future
information. Our Video Prediction Policy, built on these representations, achieves consistent improvements across four benchmarks.

Abstract

Recent advancements in robotics have focused on de-001
veloping generalist policies capable of performing multi-002
ple tasks. Typically, these policies utilize pre-trained vi-003
sion encoders to capture crucial information from current004
observations. However, previous vision encoders, which005
trained on two-image contrastive learning or single-image006
reconstruction, can not perfectly capture the sequential in-007
formation essential for embodied tasks. Recently, video008
diffusion models (VDMs) have demonstrated the capabil-009
ity to accurately predict future image sequences, exhibiting010
a good understanding of physical dynamics. Motivated by011
the strong visual prediction capabilities of VDMs, we hy-012
pothesize that they inherently possess visual representations013
that reflect the evolution of the physical world, which we014
term predictive visual representations. Building on this hy-015
pothesis, we propose the Video Prediction Policy (VPP), a016
generalist robotic policy conditioned on the predictive vi-017
sual representations from VDMs. To further enhance these018
representations, we incorporate diverse human or robotic019
manipulation datasets, employing unified video-generation020
training objectives. VPP consistently outperforms existing021
methods across two simulated and two real-world bench-022
marks. Notably, it achieves a 28.1% relative improvement023

in the Calvin ABC-D benchmark compared to the previous 024
state-of-the-art and delivers a 28.8% increase in success 025
rates for complex real-world dexterous manipulation tasks. 026

1. Introduction 027

Building generalist robot policies capable of solving mul- 028
tiple tasks is an active area of research [8, 36]. Two es- 029
sential components for constructing such generalist policies 030
are action networks and vision encoders. One line of re- 031
search focused on developing more advanced action net- 032
works, such as employing visual-language pre-trained mod- 033
els [7, 8, 28, 31, 58], training from scratch on diverse robotic 034
datasets [49], incorporating auto-regressive [8] or diffusion 035
architectures [16], and scaling up action networks [33]. An- 036
other line of work focuses on learning more effective vi- 037
sual representations [29, 41] for embodied tasks from ego- 038
centric video datasets [20, 21] via contrastive learning [45] 039
or image reconstruction [24]. 040

In this paper, we focus on the visual representation learn- 041
ing. We observe that previous vision encoders, which are 042
pre-trained using contrastive learning between two frames 043
or single-frame reconstruction, fail to adequately capture 044
the physical dynamics inherent in sequential video datasets. 045
Recently, powerful video diffusion models (VDMs) [6, 10, 046
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26, 27, 56], trained with direct video generation objec-047
tives on much larger datasets, have demonstrated the abil-048
ity to generate continuous image sequences and exhibit a049
strong understanding of the physical world. Inspired by050
the strong prediction capabilities of VDMs, we hypothesize051
that they can better capture the physical dynamics within052
video datasets and inherently contain valuable visual rep-053
resentations that reflect the dynamics and evolution of ob-054
jects. Moreover, we observe that the visual representations055
within VDMs are structured with shape (T,H,W ), explic-056
itly representing 1 current step and (T − 1) predicted future057
steps, where H and W correspond to the height and width058
of single image representation. In contrast, previous vision059
encoders do not explicitly capture future representations. A060
comparison is visualized in Figure 2. Based on this distinc-061
tion, we refer to these latent variables within the video dif-062
fusion model as “predictive visual representations”. In the063
experiment part, we also visualize these predictive represen-064
tations and find they contain valuable temporal information065
that reflects the evolution of the physical world.066

Our key insight is that these predictive visual represen-067
tations are highly informative for downstream action learn-068
ing, as they capture the movement of objects, including the069
robot itself. Moreover, the ability to predict can be learned070
from both internet-scale video datasets and various robotic071
datasets using a consistent video generation loss, enabling072
us to transfer physical knowledge from large-scale internet073
datasets to specific robotic systems.074

Building on this insight, we introduce the Video075
Prediction Policy (VPP), which employs a two-stage learn-076
ing process: First, we finetune a text-guided video predic-077
tion (TVP) model [14, 22] from pre-trained video diffusion078
model [6] using various manipulation datasets, including079
ego-centric human manipulation [20], open-source robotic080
datasets [42], and self-collected robot data. This training081
aims to obtain a controllable video generation model that082
enhances prediction capabilities in the manipulation do-083
main. Second, we develop a multi-task generalist robot pol-084
icy conditioned on the predictive representations within the085
TVP model. Given that the predictive representations in086
the TVP model remain high-dimensional, with the shape087
(T,H,W ), we employ a video former to distill essential in-088
formation across spatial and temporal dimensions, followed089
by a widely used diffusion policy [16] to output actions.090

In experiments, our Video Prediction Policy (VPP) con-091
sistently outperform other baseline algorithms across two092
simulated [39, 57] and two real-world settings, demon-093
strating the effectiveness of our approach. Notably, the094
VPP achieves a 28.1% improvement in the Calvin ABC→D095
benchmark [39] compared to the previous SOTA method096
[30]. Additionally, VPP shows a 28.8% improvement in097
success rate over the strongest baseline, Susie [5], in com-098
plex real-world scenarios involving dexterous hand manip-099
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Figure 2. We use the video diffusion model as a vision encoder
to obtain the predictive representations that explicitly express both
current and sequential future frames. Previous vision encoders did
not have explicit future representations.

ulation. Our contributions can be summarized as follows: 100

1. To the best of our knowledge, we are the first to leverage 101
the visual representations inside video diffusion models. 102
We find that these representations explicitly express pre- 103
dicted future frames, which we refer to as “predictive 104
visual representations”. 105

2. We introduce a novel generalist robotic policy, the Video 106
Prediction Policy, by fine-tuning a TVP model in the ma- 107
nipulation domain and then learning actions conditioned 108
on predictive visual presentations in the TVP model. 109

3. We demonstrate the superior performance of our ap- 110
proach in both simulated and real-world environments, 111
highlighting its versatility. 112

2. Related Works 113

Visual Representation Learning for Robotics. Self- 114
supervised learning (SSL) techniques, such as con- 115
trastive [13, 15], distillation-based [2, 11], and reconstruc- 116
tive [3, 24], have achieved significant advancements in vi- 117
sual representation learning. Prior research has shown that 118
these SSL techniques enable vision encoders to produce 119
effective representations for embodied AI tasks [12, 43, 120
46, 54, 55], capturing both high-level semantic and low- 121
level spatial information. Notably, methods like R3M [41], 122
vip [37], VC-1 [38], and Voltron [29] have specifically fo- 123
cused on embodied tasks by innovating pre-training ap- 124
proaches on human manipulation video datasets [20, 21]. 125
However, regardless of the training objective, the learned vi- 126
sion encoders primarily focus on extracting pertinent infor- 127
mation from current observations without explicitly predict- 128
ing future states. In contrast, our Video Prediction Policy 129
leverages predictive representations within video prediction 130
models to explicitly encapsulate both current and predicted 131
future frames. 132

133
Future Prediction for Embodied Control Tasks. Exist- 134
ing research also explores the use of future prediction to en- 135
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hance policy learning [4, 5, 18, 51]. For example, SuSIE [5]136
conditions its control policy on a predicted future keyframe137
generated by InstructPix2Pix [9], while UniPi [18] learns138
the inverse dynamics between two generated frames. These139
methods typically rely on a single future prediction step to140
determine actions, which may not accurately capture the141
complexities of physical dynamics. Additionally, they often142
operate in raw pixel space, which contains much irrelevant143
information. GR-1 [51] generates subsequent frames and144
actions in an autoregressive manner. However, it only gen-145
erates one image per forward pass, and its prediction quality146
lags behind that of diffusion-based methods. Furthermore,147
GR-1 does not leverage pre-trained video foundation mod-148
els. In contrast, VPP leverages an intermediate represen-149
tation fine-tuned from a pre-trained video diffusion model,150
which captures continuous future trajectories to more effec-151
tively inform policy learning.152

153
Visual Representation inside Diffusion Models. Diffu-154
sion models have achieved remarkable success in the im-155
age and video generation tasks [6, 48]. Typically trained156
as denoisers, diffusion models predict original images from157
noisy inputs [25]. Research has shown that image dif-158
fusion models can also function effectively as vision en-159
coders [23, 34, 53], generating meaningful visual repre-160
sentations. These representations have been proven to be161
linear-separable for discrimination tasks [53], invaluable162
for semantic segmentation [34], and versatile for embod-163
ied tasks [23]. However, the capabilities of representations164
within video diffusion models have not been extensively165
explored. Our findings suggest that variables within VDMs166
have a unique predictive property not present in other visual167
representations, making them especially useful for sequen-168
tial embodied control tasks.169

3. Preliminaries170

Video Diffusion Models. The core idea of diffusion mod-171
els is to continuously add Gaussian noise to make video se-172
quences a Gaussian and leverage the denoising process for173
generating videos. Let x0 represent a real video sample, the174
forward process aims to add Gaussian noise and result in a175
set of noisy data, i.e., q(xt|xt−1) = N (xt;

√
αtxt−1, (1 −176

αt)I) , where xt and αt indicate the noisy data and noise177
amplitude at the timestep t. Let ᾱt =

∏t
i=1 αi, the above178

process can be simplified as:179

xt =
√
ᾱtx0 +

√
1− ᾱtϵt . (1)180

The reverse process starts from the most noisy sample xT181
can be described in a variational approximation of the prob-182
abilities q(xt−1|xt), as follows:183

p(xt−1|xt) = N (xt−1;
√
ᾱt−1µθ(xt, t), (1− ᾱt−1)I).

(2)184

where µθ(xt, t) = (xt−
√
1− ᾱtϵθ(xt, t))/

√
ᾱt is a learn- 185

able neural network to estimate xt−1. Further, in text- 186
guided video generation, the denoising process learns the 187
noise estimator ϵθ(xt, c) to approximate the score function 188√
1− ᾱt∇xt

log pψ(xt|c), controlling the video generation 189
based on the initial frame and language prompt. 190

191
Diffusion Policy. The diffusion model has also proven ef- 192
fective in action learning, known as diffusion policy [16]. 193
The diffusion policy aims to denoise the action sequence 194
ai = (âi, âi+1, ..., âi+m) based on observations si and in- 195
struction. Chi et al. [16] point out that diffusion policy 196
is capable of expressing complex multimodal action dis- 197
tributions and stabilizing training. Recent work [47] fur- 198
ther enhances the diffusion policy by incorporating the ad- 199
vanced diffusion transformer (DiT) block [44], a technique 200
we also adopt in the Video Prediction Policy to improve per- 201
formance. 202

4. Video Prediction Policy 203

In this section, we describe the two-stage learning process 204
of the Video Prediction Policy, shown in Figure 3. Initially, 205
we train the Text-guided Video Prediction (TVP) model 206
across diverse manipulation datasets to harness physical 207
knowledge from internet data; subsequently, we design net- 208
works to aggregate predictive visual representations inside 209
the TVP model and output final robot actions. 210

4.1. Text-guided Video Prediction (TVP) Model for 211
Robot Manipulation. 212

Recent advancements have focused on training general 213
video generation models using extensive online video 214
datasets, which encode abundant prior knowledge about the 215
physical world’s dynamics. However, we notice that these 216
models are not fully controllable and fail to yield optimal 217
results in specialized domains such as robot manipulation. 218
To address this, we fine-tune the general video generation 219
model into a specialized “Manipulation TVP Model” to en- 220
hance prediction accuracy. 221

We chose the open-sourced Stable Video Diffusion 222
(SVD) model [6] with 1.5 billion parameters as our founda- 223
tion. we observe that the open-sourced SVD model condi- 224
tions only on initial-frame images s0 without incorporating 225
language instructions l. We augment the model to incorpo- 226
rate CLIP [45] language features lemb using cross-attention 227
layers. Furthermore, we adjust the output video resolu- 228
tion to 16×256×256 to optimize training and inference effi- 229
ciency. Despite these modifications, we preserve the other 230
components of the original pre-trained SVD framework to 231
retain its core capabilities. We denote this modified version 232
as Vθ. In this setup, the initial observation s0 is concate- 233
nated channel-wise with each predicted frame as a condi- 234
tion. Then model Vθ is trained with diffusion objective, re- 235

3



CVPR
#9874

CVPR
#9874

CVPR 2025 Submission #9874. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

“Place orange 
to blue plate.”

Sp
atial-

attn

Te
m

p
o

ral-
attn

FFN …

DiT Block

DiT Block

Le
ar

n
ab

le
 t

o
ke

n
s

CLIP❆ …

…

WQ

WK

WV

Time
Noise

t=0            t=T                        

Human Manipulation Internet Robot Self-collected

Predictive Visual Representation Learning                                                                        Action Learning

× 𝐍

× 𝐍

Video Former + DiT Diffusion Policy

Text-guided Video Prediction Model

Pooling&
Concate

Action
Denoise

Figure 3. Video Prediciton Policy first trains a text-guided video prediction (TVP) model for manipulation domain, starting from pre-
trained video foundation model. Subsequently, it learns actions based on the predictive representations internal to the TVP model.

constructing the full video sequence x0 = s0:T in datasetD236
from noised samples xt =

√
ᾱtx0 +

√
1− ᾱtϵ:237

LD = Ex0∼D,ϵ,t∥Vθ(xt, lemb, s0)− x0∥2 (3)238

The video prediction objective offers a unified interface239
that directly generates future visual sequences, enabling the240
TVP model to harness physical knowledge from diverse241
datasets. These include internet-based human manipulation242
datasets DH , publicly available robot manipulation data243
DR, and also self-collected datasets DC . Given the vary-244
ing quality and scale of these datasets, we introduce spe-245
cific coefficients λ to appropriately balance the influence of246
different dataset types:247

Lvideo = λHLDH
+ λRLDR

+ λCLDC
(4)248

Then we froze the fine-tuned manipulation TVP models in249
downstream action learning.250

4.2. Action Learning Conditioned on Predictive Vi-251
sual Representation252

TVP Model as Vision Encoder. After training the TVP253
model specifically for manipulation tasks, it can accurately254
predict future sequences based on image observations and255
instructions. However, denoising an entire video sequence256
is highly time-consuming and may lead to open-loop con-257
trol issues, as discussed in [18]. Moreover, videos in their258
original pixel format often contain excessive, irrelevant in-259
formation that can interfere with effective decision-making.260

To address these concerns, we employ the video diffu-261
sion model primarily as a “vision encoder” rather than a262
“denoiser” by performing only a single forward step. Our263
insight is that the first forward step, while not yielding a264

clear video, still provides a rough trajectory of future states 265
and valuable guidance. This insight is verified in our ex- 266
periment section and shown in Fig 5. Specifically, we con- 267
catenate the current image s0 with the final noised latent 268
q(xt′ |x0) (typically white noise) and input this combina- 269
tion into the TVP model. We then directly utilize the latent 270
features Fm ∈ RT×W×H×C in mth layer of the video dif- 271
fusion model Vθ: 272

Fm = Vθ(xt′ , lemb, s0)(m) (5) 273

For a robot with multiple camera views, such as a third- 274
view and a wristed camera, we predict the future for each 275
view independently, denoted as F staticm , Fwristm . 276

277
Video Former. These predictive representations within the 278
video diffusion model are still high-dimensional, as they ex- 279
press a sequence of image features. To efficiently aggregate 280
representations across spatial, temporal, and multi-view di- 281
mensions, we use a Video Former to consolidate this in- 282
formation into a fixed number of tokens. The Video For- 283
mer initializes T × L learnable tokens Q[0:T,0:L], perform- 284
ing spatial-temporal attention on each corresponding frame 285
in the predictive representations, followed by feed-forward 286
layers. Formally, this branch can be expressed as follows 287
where i is the index of frame: 288

Q′ = {Spat-Attn(Q[i], (F staticm [i], Fwristm [i]))}Ti=0

Q′′ = FFN(Temp-Attn(Q′)).
(6) 289

Action Generation. After the Video-Former aggregates the 290
Predictive feature into learnable tokens Q′′, a diffusion pol- 291
icy is employed as the action head to generate the action 292
sequence a0 ∈ A based on Q′′. We integrate the aggre- 293
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gated presentation Q′′ into diffusion transformer blocks us-294
ing cross-attention layers. The diffusion policy aims to re-295
construct the original actions a0 from noised action ak =296 √
β̄ka0 +

√
1− β̄kϵ, where ϵ represents white noise, and297

β̄k is the noisy coefficient at step k. This step can be inter-298
preted as learning a denoiser Dψ to approximate the noise ϵ299
and minimize the following loss function:300

Ldiff(ψ;A) = Ea0,ϵ,k∥Dψ(ak, lemb, Q
′′)− a0∥2 (7)301

In real-world dexterous hand manipulation tasks, where302
a = {axyz ∈ R3, arot ∈ R3, afinger ∈ R12},we use303
coefficients to balance the loss contributions from end-304
effector movement, rotational actions, and finger move-305
ments. Therefore, the optimization loss function for the dif-306
fusion policy can be written as:307

Lpolicy(ψ;A) =ωxyzLdiff(ψ; a
xyz) + ωrotLdiff(ψ; a

rot)

+ωfingerLdiff(ψ; a
finger)

(8)
308

5. Experiments309

In this section, we conduct extensive experiments on both310
simulated and real-world robotic tasks to evaluate the per-311
formance of the video prediction policy (VPP). The sim-312
ulated environments include the CALVIN benchmark [39]313
and MetaWorld benchmark [57], while the real-world tasks314
encompass Panda arm manipulation and XHand dexterous315
hand manipulation. Our aim to answer the following ques-316
tions:317
1. Can VPP achieve a higher success rate in manipulation318

tasks with predictive visual representations?319
2. How do the video pre-training and internet manipulation320

datasets enhance the performance of VPP?321
3. How does predictive representation compare to previous322

visual representations?323
4. Which layer of the video diffusion model provides the324

most effective predictive visual representations?325

5.1. Simulated Benchmarks Experiments326

Environmental Setups. We consider the CALVIN [39]327
and MetaWorld [57] simulated environments. CALVIN328
is a challenging benchmark focused on evaluating the329
instruction-following capability of robotic policies for long-330
horizon manipulations. As depicted on the left side of Fig-331
ure 4, it encompasses four environments, denoted ABCD.332
We utilize the most challenging ABC→D setting, where333
robots are trained with standard datasets collected from en-334
vironments ABC and tested in the unseen environment D.335
MetaWorld features a Sawyer robot performing various ma-336
nipulation tasks and is widely used to evaluate the precision337
and dexterity of robotic policies. As shown on the right of338

Figure 4, it includes 50 tasks with a rich array of operating 339
objects at different levels of difficulty [46]. We collected 50 340
trajectories for each task using the official Oracle policy as 341
our training dataset. 342

Baselines. We mainly consider two types of baselines, 343
methods with direct action learning and methods related to 344
future prediction: 345

• RT-1 [7]. A direct action learning robot policy that in- 346
tegrates semantic information using Efficient-Net with 347
FiLM-conditioning, followed by token learners for action 348
learning. 349

• Diffusion Policy [16]. A direct action learning policy 350
with novel action diffusers. 351

• Robo-Flamingo [32]. A direct action learning policy that 352
leverages a pre-trained LLM, incorporating visual infor- 353
mation into each layer in a flamingo style [1]. 354

• Uni-Pi [18]. Begins by learning a video prediction model 355
to generate future sequences and then learns an inverse 356
kinematics model between two frames to determine ac- 357
tions. 358

• MDT [47]. Learns a diffusion transformer policy along 359
with an auxiliary mae loss to reconstruct one masked fu- 360
ture frame. 361

• Susie [5]. Uses a fine-tuned InstructPix2Pix [9] model to 362
generate a goal image and learns a downstream diffusion 363
policy conditioned on the goal image. 364

• GR-1 [51]. Learns video and action sequences jointly us- 365
ing an auto-regressive transformer. During policy exe- 366
cution, GR-1 outputs one future frame followed by one 367
action. 368

Additionally, we include the 3D Diffuser Actor [30] base- 369
line on the Calvin benchmark, as it is the previous state-of- 370
the-art method on this benchmark, although it additionally 371
uses depth image with camera pose unlike other methods. 372

373
Video Prediction Policy Training Details. We first train 374
a controllable text-guided video prediction model for the 375
manipulation domain on various datasets as described in 376
Figure 3. Our experiments include 193,690 human ma- 377
nipulation trajectories from the Something-Something-V2 378
datasets [20] and 179,074 high-quality trajectories from in- 379
ternet robotic manipulation datasets [7, 17, 19, 28, 40, 42]. 380
This stage also includes downstream task datasets, such as 381
the official Calvin ABC dataset and Metaworld dataset, and 382
self-collected datasets on real-world robots. Given the vary- 383
ing scales and quality of different robot datasets, we ap- 384
ply varying sampling probabilities similar to the approach 385
used in [49]. Detailed dataset scales and sample ratios are 386
available in the Appendix 2. The video model training pro- 387
cess takes two days on eight NVIDIA A100 GPUs. Sub- 388
sequent action learning for each robot takes approximately 389
6-12 hours on four NVIDIA A100 GPUs. 390

391
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Category Method Annotated Data Tasks completed in a row
1 2 3 4 5 Avg. Len ↑

Direct Action
Learning Method

RT-1 [7] 100%ABC 0.533 0.222 0.094 0.038 0.013 0.90
Diffusion Policy [16] 100%ABC 0.402 0.123 0.026 0.008 0.00 0.56
Robo-Flamingo [32] 100%ABC 0.824 0.619 0.466 0.331 0.235 2.47

Future Prediction
Related Method

Uni-Pi [18] 100%ABC 0.560 0.160 0.080 0.080 0.040 0.92
MDT [47] 100%ABC 0.631 0.429 0.247 0.151 0.091 1.55
Susie [5] 100%ABC 0.870 0.690 0.490 0.380 0.260 2.69

GR-1 [51] 100%ABC 0.854 0.712 0.596 0.497 0.401 3.06
3D Method 3D Diffuser Actor [30] 100%ABC 0.938 0.803 0.662 0.533 0.412 3.35

Ours VPP (ours) 100%ABC 0.957 0.912 0.863 0.810 0.750 4.29

Data
Efficiency

MDT [47] 10%ABC 0.408 0.131 0.034 0.008 0.001 0.58
GR-1 [51] 10%ABC 0.672 0.371 0.198 0.108 0.069 1.41

VPP (ours) 10%ABC 0.878 0.746 0.632 0.540 0.453 3.25

Table 1. Zero-shot long-horizon evaluation on the Calvin ABC→D benchmark where agent is asked to complete five chained tasks
sequentially. The Video Prediction Policy demonstrates a significant improvement in the average task completion length.

Env C                 Unseen Env D

Env A                        Env B Easy Tasks

Middle Tasks

Hard Tasks

Figure 4. CALVIN and Metaworld benchmarks.

Task Level
(Numbers)

Easy
(28 tasks)

Middle
(11 tasks)

Hard
(11 tasks)

Average ↑
(50 tasks)

RT-1 0.605 0.042 0.015 0.346
Diffusion Policy 0.442 0.062 0.095 0.279

Susie 0.560 0.196 0.255 0.410
GR-1 0.725 0.327 0.451 0.574

VPP (ours) 0.818 0.493 0.526 0.682

Table 2. Success rate on 50 Metworld tasks which require precise control.

Video Prediction Policy Execution Details. To enhance392
the control frequency of robots, we assign most of the pa-393
rameters to the video former part, which has approximately394
300M parameters, while the diffusion policy head contains395
only 20M parameters. The policy execution involves run-396
ning the video diffusion model and video former for one397
forward step, and the lightweight diffusion transformer pol-398
icy denoises the action for 10 steps conditioned on learnable399
tokens. This design allows us to run the entire video predic-400
tion policy process at 7-10 Hz on a local machine equipped401
with an NVIDIA RTX-4090 GPU. Following the original402
diffusion policy paper [16], we also output 6∼10 action403
steps in one VPP forward step, further improving control404
frequency.405
Quantitative Results. The comparisons on the Calvin406
benchmark are shown in Table 1. Results for Robo-407
Flamingo, Susie, GR-1, and 3D Diffuser Actors are408
recorded from their original papers. The MDT result is409
run on official implementation. The RT-1 result is sourced410
from [32] and the Uni-Pi result from [5]. We also ran the411
Diffusion Policy based on the official open-source codebase412
with CLIP language conditions. Our proposed Video Pre-413
diction Policy significantly improved the previous state-of-414
the-art result from an average task completion length of 3.35415
to 4.29 without using any point cloud or depth input. Even416

with only 10% of the annotated Calvin ABC data used for 417
training, our method still achieved a length of 3.25, which 418
exceeds the results of related methods using full data. Fur- 419
thermore, the Video Prediction Policy also achieved the best 420
performance in the MetaWorld benchmark with 50 tasks, 421
outperforming the strongest GR-1 baseline by 10.8% in av- 422
erage success rate. 423

5.2. Analysis of Predictive Visual Representations 424

Our video prediction policy has achieved significant im- 425
provements in simulated experiments with predictive repre- 426
sentations. In this part, we conduct various experiments to 427
verify the effectiveness of these predictive representations. 428

429
Visualizations of Predictive Representations. Since we 430
use the video prediction model as a vision encoder and per- 431
form a single forward pass to obtain predictive representa- 432
tions, we are curious about the quality of these representa- 433
tions. In Figure 5 , we visualize the ground truth future, 434
single-step predictions, and 30-step denoised predictions. 435
Although the single-step prediction does not capture every 436
detail with perfect accuracy, it still conveys valuable infor- 437
mation related to robotic manipulation, such as the move- 438
ment of objects and the robot arm, which effectively sup- 439
ports downstream action learning. 440
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  Input                           Ground Truth                    30 Steps Denoise Prediction                   1 Step Direct Prediction

            “Place the grasped object in the drawer.”                                                                             “Place the orange to blue plate.”

Figure 5. Visualization of the ground-truth video, the complete denoised video, and one-step forward video predictions. Although the
textures and details are not precise in the one-step forward videos, they still provide valuable information on physical evolution.

Bridge VideoFusion Tune-A-Video Seer VPP
FVD↓ 501.2 515.7 246.3 41.4

Table 3. Quantitative evaluation of prediction quality on bridge
datasets. The results of VideoFusion [35], Tune-A-Video [52],
Seer [22] are copied from [22].

Encoder Pre-training Type Avg. Length ↑
Video Prediction
Diffusion Model Video Generation 4.29

Stable-VAE VAE Reconstruction 2.58
VC-1 MAE Reconstruction 1.23

Voltron
MAE Reconstruction+
Language Generation 1.54

Table 4. Ablation study on different visual representations.

441
Prediction Quality of Manipulation TVP Model. Addi-442
tionally, we evaluate the quantitative FVD metric [50] on443
the bridge datasets [19] with complete 30 steps denoising as444
in [22]. The results are shown in Table 3. Surprisingly, our445
model easily outperforms the previous TVP model. We at-446
tribute this improvement to our use of the pre-trained video447
foundation model SVD [6], which the earlier TVP model448
did not leverage, giving us a significant advantage.449

450
Comparisons with Other Visual Representations. To as-451
sess our predictive visual representations, we replaced them452
with alternative visual representations while maintaining453
other components of the Video Prediction Policy (VPP) un-454
changed. We considered visual representations pre-trained455
for different purposes: (1) Stable-VAE [6] pre-trained with456
VAE image reconstruction loss; (2) VC-1 [38] pre-trained457
with masked autoencoder loss, tailored for embodied tasks.458
According to the original study, we finetuned VC-1 on the459
Calvin datasets using MAE loss to better adapt to the new460
domain; (3) Voltron [29] pretrained with both MAE recon-461
struction and language generation tasks. The results, pre-462
sented in Table 4, indicate that replacing our predictive vi-463
sual representations leads to a clear decline in performance.464

Ablation Type Average Length ↑
VPP 4.29

VPP w/o Internet data 3.97
VPP w/o Internet data

w/o SVD Pretrain 1.63

Table 5. Ablation study on video pre-training and internet manip-
ulation datasets.
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4.0
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th
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Figure 6. Influences of layer positions and initial noise scales.

465
Effectiveness of Video Pre-training and Internet Manip- 466
ulation Datasets. A significant advantage of the VPP is its 467
ability to leverage the physical knowledge encoded in pre- 468
trained video generation models and Internet manipulation 469
datasets. We conducted experiments to verify the effective- 470
ness of these two components. As shown in Table 5, re- 471
moving the co-trained Internet manipulation data resulted 472
in a performance decrease from 4.29 to 3.97. Further re- 473
moving the pre-trained SVD model and training the video 474
prediction model on the Calvin data from scratch led to a 475
substantial performance decline. 476

477
Influence of Layer Position and Initial Noise Scales. We 478
are also interested in how different layers of representation 479
and initial white noise scales influence the predictive rep- 480
resentations. We experimented with representations from 481
different upsample layers and various initial white noise by 482
altering the total diffusion time-step t, following [53]. The 483
results are shown in Figure 6. Our findings suggest that the 484

7



CVPR
#9874

CVPR
#9874

CVPR 2025 Submission #9874. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Franka Panda with over 30+ tasks

Dexterous Hand with over 100+ tasks

“Pick the onion and 
place in the basket.”

“Stack green block 
on the red block.”

“Place the mouse 
on the mouse pad.”

“Place the cup 
on the mat.”

“Grasp potato into 
the pot.”

“Put the brown towel 
in the basket.”

“Place red ball to empty 
position of board.” 

“Route the cable.”“Open the drawer.”“Pick up the red block.”

Wristed 
Camera

Third-view Camera
& Wristed Camera

“Take the orange 
from my hand.”

“Relocate orange 
near the apple.”

“Press the button.” 

“Straighten the Cup.”  “Pick up the 
smaller soccer.”

“Close the drawer.” 

“Put the green toy
into the drawer.”

“Pick mango and place 
it to pink plate.” 

Figure 7. Two real-world hardware platforms and visualizations of sampled tasks. In the Panda arm platform, our experiments include 30+
tasks of 6 categories. In the Xhand dexterous platform, our experiments include 100+ tasks of 10 categories.

most effective predictive representations are located in the485
middle of the upsample blocks rather than the final predic-486
tion pixels. Additionally, the quality of representation is not487
sensitive to initial noise scales.488

5.3. Real World Experiments489

We further verified the Video Prediction Policy on two real-490
world hardware platforms:491
• Franka Panda Robot Arm. On the Franka panda plat-492

form, we collected 2k trajectories for over 30+ tasks of493
6 categories including picking, placing, pressing, routing,494
opening, and closing.495

• Xarm with 12-degree Xhand Dexterous Hand. On the496
dexterous hand platform, we collected 2.5k trajectories497
over 100+ tasks of 10 categories, including picking, plac-498
ing, cup-upright, relocating, stacking, passing, pressing,499
unplugging, opening, and closing.500

We employ the same text-guided video prediction (TVP)501
model as in our simulated experiments, trained on both in-502
ternet datasets and our self-collected real-world data. We503
train multi-task generalist policies for the Franka Panda and504
Xhand Dexterous hands, respectively, to solve all tasks in505
the domain. The hardware platform and visualizations of506
some selected tasks are shown in Figure 7.507

508
Quantitative Results. Due to the complexity of deploy-509
ing methods on real-world hardware, we select the strongest510
baseline models—GR-1, Susie, and the widely-used diffu-511
sion policy—as our baselines. We categorize the tasks into512
“seen” and “unseen” to assess the model’s capabilities. The513
unseen tasks include new backgrounds and objects that do514

Panda
 (Seen tasks)

Panda 
 (Unseen Tasks)

Deterous Hand 
 (Seen Tasks)

Deterous Hand 
 (Unseen Tasks)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

Ra
te

0.42

0.56
0.52

0.85

0.25

0.46
0.38

0.73

0.28

0.45

0.32

0.75

0.11

0.28

0.15

0.60

Diffusion Policy Susie GR-1 VPP(Ours)

Figure 8. Evaluations on real-world seen/unseen tasks.

not appear in the dataset. For evaluation, we perform 200+ 515
rollouts for Panda arm manipulation tasks and 500+ rollouts 516
for dexterous hand manipulation tasks. Due to space con- 517
straints, we report only the average success rate in Figure 518
8. Detailed success rates can be found in Appendix 1, and 519
videos of the roll-out trajectories are available in the sup- 520
plementary. 521

6. Conclusion 522

We introduce Video Prediction Policy (VPP), a novel ap- 523
proach for learning a generalist robot policy by leverag- 524
ing predictive visual representations from a video prediction 525
model. Our results show that the representations generated 526
by video prediction models are highly valuable for robot 527
policy learning, yielding consistent improvements across 528
both simulated and real-world tasks. We aim to high- 529
light the potential of video generation models in embodied 530
tasks and underscore the importance of visual representa- 531
tion learning in developing generalist robot policies. 532
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Video Prediction Policy:
A Generalist Robot Policy with Predictive Visual Representations

Supplementary Material

For your convenience, a merged video of our rollouts811
is included in the supplementary zip file.812

1. Real-world experiments813

1.1. Panda Maniplation814

On the Franka Panda platform, we gathered demonstrations815
by teleoperating the Panda robotic arm using a space mouse.816
we collected 2k trajectories for over 30+ tasks of 6 cate-817
gories including picking, placing, pressing, routing, open-818
ing, and closing. Detailed success rates for each task in819
seen and unseen settings are shown in Table 6.820

Seen Tasks
Diffusion

Policy Susie GR-1 VPP

Pick 0.36 0.56 0.52 0.90
Place 0.40 0.42 0.38 0.86
Press 0.65 0.90 0.80 0.85
Route 0.40 0.55 0.50 0.75

Drawer 0.45 0.60 0.60 0.85
Average 0.425 0.563 0.519 0.856

Unseen Tasks
Diffusion

Policy Susie GR-1 VPP

Pick 0.24 0.40 0.32 0.80
Place 0.12 0.44 0.32 0.72
Press 0.50 0.60 0.60 0.80
Route 0.20 0.50 0.50 0.70

Drawer 0.40 0.50 0.40 0.60
Average 0.250 0.463 0.388 0.737

Table 6. Specific success rate at category level. In seen tasks, We
evaluate pick and place tasks 50 times and other tasks 20 times
respectively. In unseen tasks, we evaluate pick and place tasks 25
times and other tasks 10 times respectively

Figure 9. Data collection setups.

1.2. Dexterous Manipulation 821

To collect data for dexterous manipulation, we employ 822
Vision-Pro to capture the finger joint movements of the hu- 823
man hand, which are then retargeted to our 12-degree-of- 824
freedom dexterous hand. This setup enables a human op- 825
erator to directly control the dexterous hand during vari- 826
ous manipulation tasks. We collected 2.5k trajectories over 827
100+ tasks of 10 categories, including picking, placing, 828
cup-upright, relocating, stacking, passing, pressing, unplug- 829
ging, opening, and closing. A low-level PD controller is 830
used to smooth the trajectories generated by VPP. 831

The detailed success rates for each task category in both 832
seen and unseen settings are shown in Table 7. 833

Seen Tasks
Diffusion

Policy Susie GR-1 VPP

Pick 0.38 0.61 0.48 0.83
Place 0.35 0.55 0.40 0.79

Cup-upright 0.00 0.00 0.00 0.64
Relocate 0.28 0.44 0.16 0.80

Stack 0.00 0.08 0.00 0.64
Pass 0.040 0.00 0.00 0.48
Press 0.68 0.96 0.64 0.96

Unplug 0.00 0.00 0.00 0.52
Drawer 0.40 0.64 0.48 0.72
Average 0.287 0.450 0.319 0.749

Unseen Tasks
Diffusion

Policy Susie GR-1 VPP

Pick 0.12 0.42 0.26 0.75
Place 0.08 0.32 0.20 0.68

Cup-upright 0.00 0.00 0.00 0.40
Relocate 0.12 0.32 0.12 0.76

Stack 0.00 0.00 0.00 0.56
Pass 0.00 0.00 0.00 0.32
Press 0.44 0.76 0.40 0.88

Unplug 0.00 0.00 0.00 0.20
Drawer 0.28 0.44 0.24 0.56
Average 0.110 0.328 0.159 0.605

Table 7. Specific success rate at category level. In seen tasks, We
evaluate pick and place tasks 100 times and other tasks 25 times
respectively. In unseen tasks, we evaluate pick and place tasks 50
times and other tasks 20 times respectively
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Method Tasks completed in a row
1 2 3 4 5 Avg. Len ↑

VPP(Ours) 0.957 0.912 0.863 0.810 0.750 4.29
VPP(Single-view) 0.909 0.815 0.713 0.620 0.518 3.58

Ablation.1 0.949 0.900 0.839 0.780 0.714 4.18
Ablation.2 0.951 0.904 0.840 0.777 0.718 4.19

Table 8. More ablation studies.

2. Video Prediction Model834

2.1. Datasets Sample Ratios835

Given the varying quality and scale of these datasets, we836
have introduced different sample ratios to appropriately bal-837
ance the influence of different datasets, similar to [49]. De-838
tailed information is shown in Table 9.839

2.2. More Visualization of Complete Prediction Re-840
sults841

We present additional visualizations of prediction results842
from our fine-tuned manipulation TVP model. Predictions843
on human manipulation datasets are displayed in Figure 10,844
and those on robotic manipulation datasets are illustrated845
in Figure 11. All trajectories are sampled from the valida-846
tion datasets and are predicted using the same manipulation847
TVP model. Each sample was denoised in 30 steps using848
classifier-free guidance set at 7.5, as described in [22]. Our849
TVP model predicts a horizon of 16, and we visualize 8850
frames at a skip step of 2 due to space constraints.851

2.3. More Visualizations of Predictive Representa-852
tions853

We visualize the intermediate predictive representations854
through one-step direct predictions. Additional visualiza-855
tions can be found in Figure 12. As discussed in the experi-856
mental section, while the textures and details in the one-step857
forward videos are not precise, they still offer valuable in-858
sights into physical evolution. The movements of objects859
and robot arm itself already can be reflected in the visual-860
ized representations.861

3. More Details for Experiments 862

3.1. Structure details 863

We provide the VPP architecture and hyperparameter set- 864
ting details in four evaluate environments, as shown in Table 865
10. The transformer block in TVP follows the setting in [6], 866
and the rest of the hyperparameter in Diffusion Transformer 867
follows the work [47]. 868

3.2. More ablation 869

In this section, we present additional ablation experiments 870
conducted under the ABC→D setting of CALVIN [39]. 871

Ablation 1 entails the removal of the Temporal-attn 872
module from the Video Former while maintaining all other 873
configurations same as VPP. The results, displayed in Ta- 874
ble 8, demonstrate that the Temporal-attn module could en- 875
hance the temporal comprehension capabilities of the Video 876
Former. 877

Ablation 2 introduces a 2-step denoising process in the 878
TVP to derive the predictive visual representation. The out- 879
comes are summarized in Table 8, revealing that the 2-step 880
process did not yield superior performance. We hypothesize 881
this is because a single denoising step suffices to generate 882
an effective representation for trajectory prediction in our 883
configuration. Additionally, the 2-step denoising process 884
nearly doubles the inference time and reduces the control 885
frequency by half. Due to these factors, we opted for a one- 886
step direct encoder in our main experiments. 887

Single-view Ablation evaluate the Calvin ABC→D task 888
using only a single observation viewpoint (static view) and 889
find that the success rate for Task 5 reaches 3.58. This 890
even surpasses the success rate achieved by the state-of-the- 891
art 3D Diffuser Actor, which utilizes two viewpoints along 892
with depth images. 893

3.3. Baseline Implementations 894

The baseline methods, including RT-1 [7], GR-1 [51], and 895
Diffusion Policy [16], are implemented based on their of- 896
ficial repositories. For comparison with Susie [5] in both 897
the Metaworld and real-world manipulation scenarios, we 898
adopt InstructPix2Pix [9] as the future frame predictor and 899
use an image-goal Diffusion Policy [16] to generate the 900
state sequence. 901
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Dataset Type Name Trajectory Numbers Smaple Ratio
Internet
Human Maniplation

Something-
something-v2 191,642 0.30

Internet
Robot
Datasets

RT-1 87,212 0.15
Bridge 23,377 0.15
BC-Z 43,264 0.08
Taco-Play 3,603 0.01
Jaco-Play 1,085 0.01
Calvin-ABC 18,033 0.10
Metaworld 2,500 0.05

Self-Collected
Datasets

Panda Arm 2,000 0.05
Dexterous Hand 2,476 0.10

Total - 375,192 1.00

Table 9. We outline the dataset scales and sample ratios used for training our manipulation text-guided video prediction model. Following
[22], we exclude 5,558 bridge trajectories and 2,048 something-something-v2 trajectories during training, reserving them for validation.
For all other datasets, 3% of the trajectories are excluded and used as validation datasets.

(a) moving bottle away from bottle (b) moving silicone towards the camera

(c) moving toy closer to plastic glass (d) pouring liquid into a cup

(e) pouring milk into glass (f) turning the camera right while filming jeep

(g) pretending to pick a tennis ball up (h) pulling toy car from left to right

(i) putting something similar (j) tearing paper into two pieces

Figure 10. Visualization of video prediction results on Internet human manipulation validation datasets with 30 steps de-noising.
The green frames indicate the ground truth while the red frames indicate the predicted futures. Zoom in for better comparisons.
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(a) open bottom drawer (b) place apple into bottom drawer

(c) place eraser in purple bowl (d) place the white sponge in the ceramic cup

(e) put bowl on plate cardboard fence (f) put eggplant into pot or pan

(g) Place the grasped object into the drawer (h) close the drawer

(i) Put the grey circle on the red pole (j) open the drawer

(k) pick carrot (l) pick the blue block

(m) Put the green block above the red block (n) Place the purple onion onto the basket

(o) pick the yellow ball to the empty hole of the board (p) Receive the orange from hand and place it into the basket

Figure 11. Visualization of video prediction results on robotic datasets with 30 steps de-noising. The green frames indicate the ground
truth while the red frames indicate the predicted futures. (a)-(j) are sourced from internet robotic while (k)-(p) are from self-collected
datasets. Zoom in for better comparisons.
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(a) place the grasped object in the drawer. (b) close the drawer.

(c) pick the mango and place in blue plate (d) stack the green block on red block

Figure 12. Visualization of Predictive representations. Green frames represent the ground truth, red frames correspond to the predicted
future states, and blue frames illustrate the visualized predictive representations. Zoom in for better comparisons.

Type Name Calvin Metaworld Franka Panda Xhand

Prediction Video lens 16 8 16 16
Action shape 10 ∗ 7 4 ∗ 4 10 ∗ 7 10 ∗ 18

TVP Language shape 20 ∗ 512 20 ∗ 512 20 ∗ 512 20 ∗ 512
Image shape 256 ∗ 256 256 ∗ 256 256 ∗ 256 256 ∗ 256

Video Former

Token shape 16 ∗ 14 ∗ 384 8 ∗ 28 ∗ 384 14 ∗ 16 ∗ 384 14 ∗ 16 ∗ 384
Input dim 1280 1280 1280 1280
Latent dim 512 512 512 512
Num heads 8 8 8 8
num Layers 6 6 6 6

Diffusion Transformer

Latent dim 384 384 384 384
Condition shape 225 ∗ 384 225 ∗ 384 225 ∗ 384 225 ∗ 384
Num heads 8 8 8 8
Encoder Layers 4 4 4 4
Decoder Layers 4 4 4 4
Sampling Steps 10 10 10 10

Hyperparameter

TVP batchsize 4 4 4 4
Policy batchsize 76 64 128 128
Epoch nums 12 30 30 40
Learning rate 1 ∗ 10−4 5 ∗ 10−5 1 ∗ 10−4 1 ∗ 10−4

Table 10. Hyper-parameters in the Video Prediction Policy (VPP).
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